USITT #RIGSAFE DAY APRIL 29!

For the second year in a row, USITT is promoting rigging safety on social media by asking people to use the hashtag #RigSafe on April 29th.  USITT will be promoting their Rigging Safety Initiative providing free rigging inspections and safety training for high school stages.  USITT is also producing the Jay O. Glerum Rigging Masterclass in Denver this June.

The importance of knowledgeable, safety conscious riggers is obvious when we consider that there are literally tons of equipment hanging over the heads of the audience and performers in many of our theaters.  USITT does a good job of offering training to high school and college students.  ESTA and their Entertainment Technician Certification Program (ETCP) take the next step by administering an industry-wide program of rigorous assessments for professional technicians in the categories of Rigger-Arena, Rigger-Theatre, and Entertainment Electrician.

These exams are a voluntary test of certain abilities, skills and knowledge in each category.  Individuals who have passed the exam have demonstrated proficiency in their respective field.  Studio T+L supports increased professionalism for entertainment technicians, and requires that an ETCP certified technician lead the rigging installation team on all of our projects.  We also encourage theatre owners and producers to support their technicians in attaining ETCP certified status.  ESTA offers ETCP exam guidance and information to organizations and individuals here.

MIT Creates Incandescent Lamp As Efficient as LEDs

Researchers at MIT and Purdue University have demonstrated an incandescent lamp with an efficacy of 6.6 percent, and with a potential efficacy as high as 40 percent. The paper was published in the April issue of Nature Nanotechnology. The demonstration compares favorably to current low efficacy fluorescent and LED lamps, while the upper limit is double the current maximum efficacy for fluorescents and LEDs.

The lamp uses a flat filament, rather than the coil of typical incandescent lamps, that is held between two plates of glass with a coating similar to a dichroic reflector, which the researchers call a photonic crystal. The plates permit visible light to pass through them, but reflect the infrared light back to the filament further heating it and producing more light. This idea has been with us for a while now, with most major lamp manufacturers producing some version of an IR halogen lamp. The main difference is that the new dichroic-like coating is much more efficient than the coatings currently in use and works at a much wider range of wavelengths and angles.

This is great news for those of us who haven’t bought into the idea that LEDs will make everyone happy, make all of our children above average, and help the country win the war. Between the low LPDs of the current versions of Standard 90.1 and other energy conservation codes, and the high efficacy of LEDs, most of us are compelled to use LEDs as the primary light source in many of our projects whether we want to or not. LEDs are great, but they’re not the best design choice for every application. As my students and readers of my book know, I regard energy efficiency as an important consideration in any lighting design, but not the primary goal. My first goal is to understand and deliver the desired look and feel of the space I’m lighting while providing appropriate light levels. My second goal is to explore the possible techniques and technologies that I can use to achieve my first goal. My third goal is to use the most energy efficient option from among the best options.

As a designer whose primary concern is the quality of the living/working/shopping environment I’m helping to create, I want to have as many tools at my disposal as possible, not just LEDs. At this point, it seems that lamp and fixture manufacturers are fully embracing the LED with very little attention paid to other light sources, with the possible exception of the OLED. If this experimental lamp becomes commercialized, we’d be able to use inexpensive, tried-and-true dimming technologies that deliver the performance we want without any of the problems associated with fluorescents and LEDs (flickering, flashing, dimming curves that are too flat or too steep, inability to dim smoothly to 0%, high cost, etc.).

This lamp wouldn’t be a solution for all lighting situations of course, in the same way that the LED isn’t a solution for all situations, but it would allow us to have true incandescent light in any application that called for it without running afoul of energy conservation codes. The best of all possible worlds!

IES Symposium Summary

If you missed IES Research Symposium III Light + Color you missed an exciting (for color geeks) few days. It would take too long to relate everything that was discussed, but here are some key highlights.

  • TM-30-15 is seeing broader acceptance throughout the industry. In an exciting development, it seems that the CIE is going to endorse TM-30 Rf after a few changes are made. The expectation is that the industry will then begin a rapid movement toward using Rf instead of CRI Ra, and that eventually CRI will be withdrawn. Unfortunately, the CIE is notoriously slow, so there is no timeline for their formal endorsement of TM-30. Maybe next year?
  • Manufacturers are resolving the spectral deficiencies that result from using a limited number of LEDs in both color mixing and color temperature tuning products. Their solution is to move from two and three color systems to systems using four or five independently controlled colors of LEDs.
  • Color preference was a big topic with no resolution. One complaint of both CRI and TM-30 is that they penalize light sources that deviate from the reference source even if many people prefer the deviation. Of course, Ra and Rf are both fidelity metrics, so they must penalize such deviations.   We have strong evidence that people prefer light sources that slightly increase the saturation of objects, and that people prefer light sources that include somewhat more red than the reference sources. However, because the amount of deviation that is preferred is application dependent, a single, all-purpose metric for rating color preference seems to be unattainable.